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A numerical ‘‘macroscopic-scale” method for static (including hysteresis) and moving con-
tact lines for partially wetting liquids is presented. The numerical method is based on the
implementation of a ‘‘sub-grid” description of the contact line that consists in imposing the
apparent angle for static and moving contact lines. The numerical simulations are validated
against several well controlled bi-dimensional situations: the equilibrium shape of a drop
released on a hydrophobic or hydrophilic wall, the axisymmetric spreading of a drop for a
partially wetting liquid, the migration of a drop placed on a inclined wall and submitted to
a Couette or Poiseuille flow.
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1. Introduction

Despite its apparent simplicity, the behavior of a drop spreading on a wall is a very difficult problem. Indeed the wetting
of a solid by a liquid concerns scales from the capillary length to the Van der Waals forces and remains only partially under-
stood [4,17,24]. The description of the contact line (where the fluid–fluid interface intersects the solid surface) is complicated
by the fact that the Navier–Stokes equations with standard no-slip conditions produce an infinite viscous dissipation [28].
Consequently a microscopic description has to be introduced to cut of this singularity. From the numerical point of view,
this particular complexity of the physics of the contact line makes the simulations very delicate. For instance, the numerical
description of the deformation and the motion of a drop on an inclined wall or submitted to a shear flow requires a numerical
model able to simulate the static deformation of the drop, the transition from the static to the motion and then the motion of
the receding and advancing contact lines. Only recently methods have been developed to account for the numerical imple-
mentation of the hysteresis and the dynamics of the contact angle, the angle that the fluid–fluid interface makes with the
solid surface at the contact line. Few numerical studies presented in the literature are able to describe the complete behavior
of the contact line (see [55] for a recent review on the subject). The numerical studies differ: (i) by the numerical strategy
used to describe the interface displacement and deformation: Boundary Integral Method [14,27,52], Adaptative grid meth-
ods [21,53], Level Set Method [38,55], Volume of Fluid Method [1,47] or Front-Tracking Method [31]; (ii) by the way that the
moving contact angle is imposed: constant angle with no-slip conditions [1,31,47], static angle with a ‘‘slip length” [2,38,55],
dynamic model for the apparent angle [27], Diffuse Interface Method [15,29]. Moving contact lines have also been modeled
with contact angle hysteresis in two-dimensional situations [38,55] and three-dimensional situations [16]. Most of these ap-
proaches do not describe the microscopic (Van der Waals) interactions between the fluids and the solid wall but solve the
. All rights reserved.
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flow on a macroscopic-scale to access to large scale of the interface. The limitation of such numerical approach is that it is not
possible to perform direct numerical simulations of the flow up to the molecular scale responsible for the wetting as Molec-
ular Dynamics simulations can do [4]. For macroscopic-scale simulations, adapted models have to be selected and imple-
mented to describe the contact angle at a sub-grid scale. This is the objective of the numerical approach presented in this
paper. We present a numerical method to describe static (including hysteresis) and moving contact lines for partially wetting
liquids. The numerical code JADIM used for this study and the numerical modeling introduced to describe the physics of the
contact line are presented in Sections 2 and 3, respectively. Section 4 presents numerical tests performed to characterize the
spurious currents for isolated and wetting drops. In Section 5, the numerical modeling of the contact line is validated by con-
sidering the equilibrium shape of a drop deposited on hydrophobic or hydrophilic walls. The implementation of the dynamic
angle is tested in Section 6 by computing the axisymmetric spreading of a drop for a partially wetting liquid. In Section 7 we
consider the two-dimensional problem of a drop initially placed on a horizontal wall which is slowly inclined until the mo-
tion of the drop. Finally, we consider in Section 8 the deformation and the migration of two-dimensional drops submitted to
a shear flow.

2. Numerical method

The numerical code used for this study is the JADIM code developed to perform local analyses of dispersed two-phase
flows [34,35,41,43]. The objective of this work is to introduce the modeling of the contact line in the Volume of Fluid
(VoF) modulus of JADIM [3,7,8]. The implemented VoF method consists in an Eulerian description of each phase on a fixed
grid, the interface between the two-phases being calculated using the transport equation of the local volume fraction of one
phase. The two fluids are assumed to be Newtonian and incompressible with no phase change. Under isothermal condition
and in the absence of any surfactant the surface tension is constant and uniform at the interface between the two fluids. In
such conditions, the velocity field U and the pressure P satisfy the classical one-fluid formulation of the Navier–Stokes
equations:
r:U ¼ 0 ð1Þ

q
@U
@t
þ U � rð ÞU

� �
¼ �rP þr � Rþ qgþ Fs ð2Þ
where q and l are the density and dynamical viscosity. R is the viscous stress tensor, g is the gravity and Fs is the capillary
contribution:
Fs ¼ �rðr � nÞndI ð3Þ
where r is the surface tension, n denotes the unit normal of the interface going out from phase 1 and dI is the Dirac distri-
bution associated to the interface. The location of each phase is given by a scalar C (called volume fraction or color function)
which obeys the transport equation:
@C
@t
þ U � rC ¼ 0 ð4Þ
This volume fraction is C ¼ 1 (resp. C ¼ 0) in cells filled with fluid 1 (resp. 2) and 0 < C < 1 in cells cut by the interface. The
local density and dynamic viscosity are deduced from the value of C by a linear interpolation
q ¼ Cq1 þ ð1� CÞq2 l ¼ Cl1 þ ð1� CÞl2 ð5Þ
The specific aspect of our approach when compared to the classical VoF or Level Set Methods [49–51] concerns the technique
used to control the thickness of the interface. In our approach no interface reconstruction or redistance techniques are intro-
duced. The interface location and thickness are both controlled by an accurate transport algorithm based on Flux-Corrected
Transport (FCT) schemes [58]. This method leads to an interface thickness of about three grid cells by the implementation of
a specific procedure for the velocity used to transport C in flow region of strong strain and shear [8].

The numerical description of the surface tension is one of the crucial points to study systems where capillary effects con-
trol the interface shape. This interfacial force is solved using the classical Continuum Surface Force (CSF) model [9] and is
distributed over grid points neighboring the interface. It means to transform a surface force Fs into a force Fv by spreading
its effect in a region of thickness of few cells:
Fv ¼ �rr � rC
krCk

� �
rC ð6Þ
The expression of the capillary term is composed of two terms representing, respectively the curvaturer � ðrC=krCkÞ and
the location/orientationrC of the capillary forcing. A classical problem of this formulation is the generation of spurious cur-
rents [32,46] due to an inaccurate calculation of the curvature of the interface. In order to decrease spurious current inten-
sity, a classic solution introduced by Brackbill et al. [9] consists of calculating the surface curvature from a smoothed density
gradient whilst the discretisation of the delta function uses an unsmoothed density. Popinet and Zaleski [46] propose a
‘‘pressure-gradient” correction, Lafaurie et al. [32] implemented a conserving form of the surface tension term and Jamet



J.-B. Dupont, D. Legendre / Journal of Computational Physics 229 (2010) 2453–2478 2455
et al. [30] developed an energy conserving discretisation in a Second-Gradient method. Renardy and Renardy [48] have
implemented the Parabolic Reconstruction Of Surface Tension (PROST) method in the SURFER code that reduced the mag-
nitude of the spurious currents. More recently, François et al. [22] have developed the Sharp Surface tension Force (SSF)
method that also significantly reduces spurious currents compared to CSF methods. In our approach the capillary term is
calculated by imposing successive filtering to the volume fraction (here in two dimensions):
bCnf

i;j ¼
3
4
bC nf�1

i;j þ 1
16

bCnf�1
iþ1;j þ bC nf�1

i�1;j þ bC nf�1
i;jþ1 þ bCnf�1

i;j�1

� �
ð7Þ
with nf ¼ 1; . . . ;N and bC0
i;j ¼ Ci;j. The capillary force is then evaluated using the smoothed distribution bC ¼ bCN . The number of

iterations N required to significantly reduce spurious currents and to obtain accurate results has been first tested in un-
bounded fluid at rest [6]. Additional tests have been performed in this study for static isolated drops and drops wetting a
plane surface. These are presented in Section 4. The filtering of each contribution to the capillary term has been tested sep-
arately, Nj and NL being the number of iterations in the filtering procedure applied to C to calculate the curvature and the
location/orientation contributions, respectively. The equations are discretized on a staggered grid using a finite volume
method, all spatial derivatives being approximated using second-order centered schemes. The volume fraction C and the
pressure P are volume-centered and the velocity components are face-centered. Time advancement is achieved through a
third-order Runge–Kutta method for advective and source terms and a Crank–Nicolson method for viscous stresses. Incom-
pressibility is satisfied at the end of each time step though a projection method. The overall algorithm is second-order accu-
rate in both time and space. Basically each time step is composed of four steps. Hence starting with Un and Cn they are:

Step 1. Update for C
The advection Eq. (4) is solved by using a modified version of the transport scheme proposed by Zalesak [58]. The pro-
cedure to transport the interface is described in detail in [8]. Briefly, the fronts are prevented from spreading in time
by a specific strategy in which the velocity at nodes crossed by the interface is modified to keep the thickness of the inter-
face constant. The velocity used to transport C is made almost constant across the interface by using the velocity inter-
polated at C ¼ 0:5. The intermediate value of the volume fraction is used to obtain:
qnþ1=2 ¼ Cnþ1=2q1 þ ð1� Cnþ1=2Þq2; lnþ1=2 ¼ Cnþ1=2l1 þ ð1� Cnþ1=2Þl2 ð8Þ

Step 2. Semi-implicit viscous solve for U�

In this step, an intermediate velocity field U� is computed from changes to the known field Un which result from convec-
tive, viscous and body forces. This is achieved using a three-step Runge–Kutta (RK) time-stepping procedure where the
nonlinear advective terms A are computed explicitly while the diffusive terms L are treated using the semi-implicit
Crank–Nicolson (CN) algorithm (see [10,34]). Within each of the three intermediate steps (k ¼ 1;2;3) of the time step
½nDt; ðnþ 1ÞDt� the solution is advanced as follows:

Uk � Uk�1

Dt
¼ ckAðUk�1Þ þ fkAðUk�2Þ þ ðak þ bkÞ g� 1

qnþ1=2rPn�1=2
� �

þ ðak þ bkÞLðUk�1Þ þ bkLðUk � Uk�1Þ ð9Þ

where U0 ¼ Un and U� ¼ U3. The Runge–Kutta coefficients ak; bk; ck and fk are those currently used in the RK/CN algorithm
(see [10]).

Step 3. Capillary contribution for U��

A second intermediate velocity field U�� is introduced to determine the capillary contribution:
U�� � U�

Dt
¼ 1

qnþ1=2 Fnþ1=2
v ð10Þ
The capillary term Fnþ1=2
v given by (6) is evaluated by approximating the smoothed distribution bC ¼ bCN at time ðnþ 1=2ÞDt.

The value of the contact angle hnþ1=2 is determined following the procedure described in the next section. Briefly, the value of
the contact angle h� that locally cancels U�� is calculated using an iterative procedure. If hR 6 h� 6 hA; h is imposed to be h�,
otherwise h is calculated using the dynamic model chosen for this study.

Step 4. Projection step for Unþ1

The final velocity field Unþ1 is made divergence-free by solving
Unþ1 � U��

Dt
¼ � 1

qnþ1=2rUnþ1=2 ð11Þ
where the pressure correction Unþ1=2 is solution of the pseudo-Poisson equation:
r � 1
qnþ1=2rUnþ1=2
� �

¼ �r � U��

Dt
ð12Þ
The final pressure is deduced from the auxiliary potential Unþ1=2 through the relation:
Pnþ1=2 ¼ Pn�1=2 þUnþ1=2 ð13Þ
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The linear system (12) is solved by a Jacobi preconditioned conjugate gradient technique (The JCG of the ITPACK Library) for
three-dimensional cases while a direct Cholesky method is used in two-dimensional situations [41].
3. Numerical modeling of the contact angle

The main challenge for numerical simulations of drops spreading on surfaces concerns the accurate description of the sur-
face tension effects controlled by the hysteresis and the motion of contact lines on walls. The numerical model for the con-
tact angle developed in this study is presented in the following. We would like to stress here that the interface is not
reconstructed in our approach so that it is not possible to impose directly the slope of the interface (or its normal) in the
cell touching the wall. Our objective is to develop an accurate simulation of the physics of the wetting in order to impose
the correct apparent (macroscopic) angle h at a wall for any instantaneous situation (Fig. 1). This could be a static situation
with an angle in the interval defined by the advancing angle hA and the receding angle hR ðhR 6 h 6 hA) or a dynamic situation
for a moving line with a instantaneous dynamic angle hdðtÞ determined with an adapted model.

3.1. Numerical procedure to impose a given angle

As shown by expression (6), the capillary contribution to the momentum equation requires the knowledge of rC. If we
denote the apparent (macroscopic) angle h between the interface and the wall, the value of rC at the wall is linked to the
normal n of the interface by the relation:
rC
krCk ¼ n ¼ sinhnk þ coshn? ð14Þ
where nk and n? are unit vectors parallel and normal to the wall, respectively (Fig. 2).
In practice, the value ofrC at the wall is obtained using a ‘‘ghost” value Cw of the void fraction at the wall. If we consider a

wall of normal ez, the ghost value Ci;w is deduced from the calculated value Ci;k and Ci;kþ1 at points k and kþ 1, respectively:
Ci;w ¼
d2

2

d2
2 � d2

1

Ci;k �
d2

1

d2
2 � d2

1

Ci;kþ1 �
d2d1

d2 þ d1

@C
@z

� �
i;w

þ Oðd3Þ ð15Þ
o

θ

θ

θ

A

R

U

Fig. 1. Evolution of the apparent angle h of the interface with the contact-line velocity (after [17]).

n

n||

n

Fig. 2. Definition of the normal of the interface at the contact line.
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where d2 and d1 are the distances from the wall of nodes Ck and Ckþ1, respectively. For a regular grid spacing D normal to the
wall, d2 ¼ 3D=2 and d1 ¼ D=2, and the terms involving d2 and d1 in (15) are 9=8;1=8 and 3D=8, respectively. The derivative
normal to the wall ð@C=@zÞi;w has to be determined so that the calculation of rC at the wall satisfies the relation (14) that
guaranties the angle h between the interface and the wall.

For example, if we consider the 2D situation ðex; ezÞ where the normal of the wall is ez, one has nk ¼ ex and n? ¼ ez. We
deduce from (14) the relation at the wall that satisfies ð@C=@zÞi;w:
Fig. 3.
@C
@z

� �
i;w

sinh ¼ � @C
@x

���� ����
i;w

cosh ð16Þ
The derivative ð@C=@xÞi;w is determined following a discretisation consistent with that used to determine the components of
rC at the wall for the calculation of the capillary term (6). This is done by extrapolating the values ð@C=@xÞi;k and ð@C=@xÞi;kþ1

obtained using, respectively Ci;k;Ci�1;k;Ciþ1;k and Ci;kþ1;Ci�1;kþ1;Ciþ1;kþ1 to respect the second-order accuracy of the spatial dis-
cretization. Finally, the ghost value Ci;w is calculated by:
Ci;w ¼
d2

2

d2
2 � d2

1

Ci;k �
d2

1

d2
2 � d2

1

Ci;kþ1 þ
d2d1

d2 þ d1

cosh
sinh

@C
@x

���� ����
i;w

ð17Þ
Note that this explicit procedure can be directly extended to 3D configurations. For example, considering the 3D situation of
an interface wetting a wall of normal ez, relation (14) gives:
@C
@z

� �
w

sinh ¼ @C
@x

� �
w

coshnk x þ
@C
@y

� �
w

sinhnk y ð18Þ
where nk x and nk y are the Cartesian component of nk given by:
nk x ¼
� @C

@xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@C
@x


 �2
w
þ @C

@y

� �2

w

r ; nk y ¼
� @C

@yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@C
@x


 �2
w
þ @C

@y

� �2

w

r ð19Þ
and the ghost value at the wall is obtained by:
Ci;w ¼
d2

2

d2
2 � d2

1

Ci;j;k �
d2

1

d2
2 � d2

1

Ci;j;kþ1 þ
d2d1

d2 þ d1

cosh
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@C
@x

� �2

i;w
þ @C

@y

� �2

i;w

s
ð20Þ
The main interest of this approach is its generality that allows it to be used for any non-reconstruction interface algorithm
whatever the numerical diffusion of the interface. The ghost value Cw given by (15) is imposed in all the cells containing the
interface ð0 < C < 1Þ. This is important to stress that Cw is only used for the calculation of the capillarity term (6) in the
momentum Eq. (2). Note also that the condition ð@C=@zÞw ¼ 0 is equivalent to consider an interface normal to the wall
h ¼ 90�.

A possible improvement of this explicit method consists in calculating ð@C=@zÞi;w using the ghost values Ci�1;w;Ci;w and
Ciþ1;w. Combined with relation (15) one then obtains a linear system for Cw.

3.2. Physical model for moving contact lines

Different models are available in the literature to describe contact line dynamics [5,20,24–26,45,54]. They differ by the
approach used to solve the paradox of the contact line revealed by the continuum approach [4]. For this study, we have se-
lected the hydrodynamic model developed by Voinov [57] and Cox [13] and Dussan’s group [18,45]. According to [45], the
contact angle of a moving interface is constant at a characteristic intermediate length scale r � 10 lm between the micro-
scopic length scale lm � 1 nm where the microscopic angle is controlled by the intermolecular forces and the macroscopic
length scale corresponding to the capillarity length Lc ¼ ðr=DqgÞ1=2 � 1 mm (Fig. 3). Several experimental studies have
confirmed the size of these characteristic length scales [18,42,45,53]. The so-called dynamic angle hd depends on the slip
θd

r ≈10μm

≈Lc

θs lm ≈1nm

Characteristic length scales for the apparent dynamic angle hd . lm is the microscopic length, Lc is the macroscopic or capillarity length (after [4]).
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velocity normal to the contact line at the wall Ucl ¼ U � nk and can be expressed as a function of the slip capillary number
Cacl [45]:
hdðrÞ ¼ g�1 g hðlmÞð Þ þ Cacl ln
r
lm

� �
with gðh0Þ ¼

Z h0

0

h� sin h cos h
2 sin h

dh ð21Þ
Note that this expression can be well approximated by the relation h3
d ¼ hðlmÞ3 þ 9Cacl lnðr=lmÞ [13]. This model is valid under

the conditions
Recl ¼
qL Uclj jr

lL
� 1 and Cacl ¼

lL Uclj j
r

� 1 ð22Þ
[11,33] have shown experimentally that the limit of validity is less restrictive: Cacl 6 0:1. This aspect is discussed in Section 6
presenting numerical simulations of partial wetting dynamics. In our approach, we have decided to impose the apparent dy-
namic angle hd for the interface at the wall. The dynamic angle hd is obtained using the Dussan’s model given by (21). The
functions g and g�1 are calculated using the simplified expressions g � x3=9� 0:00183985x4:5 þ 1:845823	 10�6 x12:258487

and g�1 � ð9xÞ1=3 þ 0:0727387x� 0:0515388x2 þ 0:00341336x3 proposed by Mathieu [40]. To be consistent with the se-
lected physical model, the apparent angle has to be imposed at the intermediate distance r 
 10 lm so that the grid size
D at the wall has to satisfy:
D 
 r 
 10 lm ð23Þ
In addition, a slip condition is used. The fluid is allowed to slide across the solid surface, following the Navier slip law [44]
Uw ¼ k
@U
@z

� �
w

ð24Þ
where wall slip is quantified by a slip length k which is the fictitious distance below the slipping surface where the velocity
extrapolates to zero. Numerically, the slip boundary condition (24) is implemented in the following manner [37]. Evaluating
the Taylor expansion of the velocity gradient at the wall ð@U=@zÞw at the centre of the first two rows of cells surrounding the
wall (i.e. at distances z ¼ d1 and z ¼ d2ðd1 < d2Þ from the surface), allows us to obtain a second-order accurate expression of
ð@U=@zÞw:
@U
@z

� �
w
¼ � d1 þ d2

d1d2
Uw þ

d2

d1ðd2 � d1Þ
U1 �

d1

d2ðd2 � d1Þ
U2 ð25Þ
where U1 ¼ Uðz ¼ d1Þ and U2 ¼ Uðz ¼ d2Þ. Then, combining (25) with the second of (24), the surface velocity Uw is obtained
as
Uw ¼
d2

d1ðd2 � d1Þ
U1 �

d1

d2ðd2 � d1Þ
U2

�� �
1
k
þ d1 þ d2

d1d2

� �
ð26Þ
Using (26), the velocity gradient at the wall ð@U=@zÞw involved in the local momentum balance (viscous shear stress contri-
bution) is obtained through the above approximation (25). The use of the Navier slip condition for solving moving contact
line is discussed in Section 6.
3.3. Numerical implementation of hysteresis and dynamic angle

Due to hysteresis, the angle of the contact line depends on the direction of displacement of the interface. Indeed, when a
drop is located on a wall which is progressively inclined, the drop deforms and only moves beyond a critical inclination of the
wall a (see Section 7). The front angle increases progressively until it reaches the advancing angle hA corresponding to the
motion of the contact line at this point. At the rear of the drop, the surface also deforms so that the angle decreases until it
reaches the receding angle hR. The range of angles between hR and hA corresponds to the hysteresis of the contact line which
is defined by:
Ucl < 0 if hd < hR ð27Þ
Ucl ¼ 0 if hR 6 hd 6 hA ð28Þ
Ucl > 0 if hA < hd ð29Þ
In the code we do not impose the value of the contact line velocity Ucl. The value of Ucl as well as the direction of displace-
ment of the interface come from the momentum balance. First, we determine the value of the contact angle. The procedure
consists in calculating the angle h� that cancels the local momentum balance (relation (10), intermediate step 3) in the cells
in contact with the wall and cut by the interface. For this purpose, the value of the contact angle h� is determined by an iter-
ative procedure and after convergence the following situations are tested:
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(i) if hR 6 h� 6 hA, the contact angle with the wall is imposed as hnþ1 ¼ h�. The ghost value of the void fraction Cw at the
wall is calculated using (15) with h ¼ h� so that the momentum (Eq. (10)) locally cancel. If the interface is immobile at
the beginning of the time step, it remains immobile for the next time step; if the interface was previously in motion,
the interface is stopped.

(ii) if h� < hR (resp. h� > hA), the limit of equilibrium is reached. The value of the contact angle hnþ1 is then calculated using
the dynamic model (21) and it is used to calculate U�� with Eq. (10). As indicated above, the velocity used to transport
C is constant across the interface and corresponds to the velocity interpolated at C ¼ 0:5. This velocity is used to deter-
mine Un

cl for the calculation of the dynamic angle. Note that, if the interface was previously at rest (Un
cl ¼ 0), Eq. (21)

gives hnþ1 ¼ hR (resp. hnþ1 ¼ hA) for a receding (resp. advancing) contact line.

Consequently for hysteresis situations, the contact angle and the velocity of the contact line Ucl are not imposed but are
calculated from the local momentum balance. This procedure allows the surface to naturally start to move when the local
momentum cannot cancel with an angle h� ranging from hR to hA or to stop when the local momentum cancels with h� in
the interval hR � hA. To prevent interface instability and diffusion at the contact line, the value of h is first determined for
C ¼ 0:5 and is then imposed in all the cells 0 < C < 1 along the direction nk determined using (19) in agreement with the
procedure developed to transport C.

3.4. Numerical validations

The validation of the Navier–Stokes solver of JADIM has been described in many previous studies dealing with particle or
bubble hydrodynamics using boundary fitted domains (see for example [34–36,41,43]). The ability of the Volume of Fluid
(VoF) modulus of JADIM to simulate the deformation and motion of fluid–fluid interfaces has been presented in [3,7,8]
for unbounded dispersed two-phases flows. We present in the following of the paper additional tests in order to validate
the new procedure developed to simulate problems controlled by contact line. Simulations have been performed in simple
2D (plane or axisymmetric) configurations for which analytical asymptotic solutions, numerical results or experimental data
are available. The next section is devoted to the characterization of spurious currents.

4. Spurious currents characterization

The surface tension contribution in the momentum equation is calculated using the CSF method of [9]. The CSF method
has the property to generate artificial flows called ‘‘spurious currents”. The aim of this section is to characterize these
unphysical flows for isolated and wetting drops. For this purpose we consider situations of drops at equilibrium correspond-
ing to exact solutions characterized by a zero velocity field at any time. The interface has also a constant curvature so that the
pressure is uniform inside the drop. The discussion is presented by considering the ‘1 and ‘1 norms of the spurious velocities
defined by Renardy and Renardy [48] and Francois et al. [22]:
‘1 ¼max
i;j;k

kUi;j;kk

 �

‘1 ¼
1

NxNyNz

X
i;j;k

kUi;j;kk
For 2D cases, Nz ¼ 1 and the summation over k is obviously frozen. Following [22] we also give a quantitative comparison
between our numerical results and the exact solution. For this purpose, we compare the pressure jump across the interface
with the theoretical one. From the numerical pressure field, the pressure jump is evaluated using three different ways:

(1) DP0 ¼ Pin
0 � Pout

1 where Pin
0 and Pout

1 are the values of the pressure at the drop center and the minimum pressure on the
boundary of the computational domain, respectively.

(2) DPtotal ¼ Pin
total � Pout

total where Pin
total and Pout

total are the averaged values of the pressure inside (1 P C P 0:5) and outside
(0:5 P C P 0) the drop, respectively.

(3) DPpartial ¼ Pin
partial � Pout

partial where Pin
partial and Pout

partial are the averaged values of the pressure inside and outside, calculated
for 1 P C P 0:95 and 0:05 P C P 0, respectively. Compared to DPtotal;DPpartial does not include the evolution of the
pressure across the diffused interface.

The corresponding relative errors are evaluated as: E0 ¼ jDP0 � DPexactj=DPexact ; Etotal ¼ jDPtotal � DPexactj=DPexact and
Epartial ¼ jDPpartial � DPexactj=DPexact , respectively. The exact jump in pressure is DPexact ¼ 2r=R in 3D and DPexact ¼ r=R in 2D
where R is the radius of the interface.

4.1. Spherical drop at equilibrium

The first configuration is a 3D test case presented by Renardy and Renardy [48]. These authors compare 3 methods called
Continuum Surface Force (CSF), Continuous Surface Stress (CSS) and Parabolic Reconstruction Of Surface Tension (PROST)
implemented in the SURFER code [32]. The computational domain is Lx 	 Ly 	 Lz ¼ 1	 1	 1, the grid spacing is uniform
Dx ¼ Dy ¼ Dz ¼ Lx=96 and the time step is Dt ¼ 10�5. The number of time steps is Nt ¼ 200. The boundary conditions are



Table 1
Norms of velocity and error in the pressure jumps at 200th time step ðDt ¼ 10�5Þ. qL ¼ qG ¼ 4;lL ¼ lG ¼ 1 and r ¼ 0:357.

Method ‘1 ‘1 Etotal (%) Epartial (%) E0 (%)

CSF@SURFER 0.0017998 0.00008403 – – –
CSS@SURFER 0.0037704 0.00014183 – – –
PROST@SURFER 0.0000224 0.00000087 – – –

CSF@JADIM

Nj;NL ¼ 0; 0 0.0075949 0.00004189 5.1 0.8 0.6
Nj;NL ¼ 6;0 0.0048164 0.00002726 5.9 0.5 0.4
Nj;NL ¼ 12;0 0.0038810 0.00002120 6.0 0.5 0.4
Nj;NL ¼ 16;0 0.0034939 0.00001835 6.0 0.5 0.4

Nj;NL ¼ 12;6 0.0030207 0.00001442 8.8 1.3 1.3
Nj;NL ¼ 12;12 0.0025098 0.00001015 11.0 3.1 2.1
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zero velocity on the top and bottom, and periodicity in x-and z-directions. Initially a spherical drop is centered at (0.5, 0.5,
0.5), with radius R0 ¼ 0:125 ðDx ¼ Dy ¼ Dz ¼ R0=22Þ and surface tension r ¼ 0:357. Both fluids have equal density,
qL ¼ qG ¼ 4, and viscosity, lL ¼ lG ¼ 1. The initial velocity field is zero. The exact solution is zero velocity for all time. In this
situation the relevant parameter is the Ohnesorge number Oh ¼ ðl2=rqR0Þ1=2 
 0:237.

Table 1 reports the ‘1 and ‘1 norms of the spurious velocities and the errors for the pressure jump. According to previous
studies (see [22,32,48]), the value of the spurious currents are expected to be of order 0:01r=l 
 0:00357. This order of mag-
nitude is also confirmed by our calculations. The magnitude of the spurious currents are in agreement with the values cal-
culated by the SURFER code using the CSF and CSS methods. The PROST method developed by Renardy and Renardy [48]
appears to be a very interesting method since it reduces by two orders of magnitude the spurious velocities. Note that
[22] have developed the Sharp Surface tension Force (SSF) method that significantly reduces the spurious currents compared
to CSF methods. Table 1 also indicates that for this case the magnitude of the spurious velocities is decreasing with the in-
crease of the number of filtering Nj while it is nearly independent of the value of NL. The error in the pressure jump is nearly
constant for the different filtering considered for NL ¼ 0. We observe that the errors are increasing with increasing NL while
the spurious currents are decreased. The value of DP0 is found to be very close to the exact value while the value of DPtotal is
found to be around 6% lower than the exact pressure. The errors Epartial and E0 have similar magnitude, less than the mag-
nitude of the error Etotal. Consequently, the error measured by Etotal is mainly due to the pressure evolution across the diffused
interface.

Finally, this test case shows that our method gives spurious velocities which are close to the magnitude given by the CSF
and CSS methods implemented in the SURFER code.

4.2. Circular drop at equilibrium

The second test is a 2D simulation based on the previous test case. The drop is a disc of radius R0 ¼ 0:125 centered in a
square of dimension Lx 	 Ly ¼ 1	 1. The calculations are performed with the same grid spacing Dx ¼ Dy ¼ Lx=96 ¼ R0=22
and the same time step (Dt ¼ 10�5). The number of time steps is now Nt ¼ 20;000 in order to obtain convergence for the
magnitude of the spurious currents. The boundary conditions are zero velocity on the frontiers of the computational domain.
The converged values of the spurious velocities are reported in Table 2. The cost of the smoothing procedure used to reduce
the effect of the spurious currents is also reported in Table 2. It is evaluated by calculating the relative difference
CCPU ¼ ðtNj ;NL � t0;0Þ=t0;0, where tNj ;NL is the CPU time for a simulation using Nj and NL iterations.

For Nj ¼ NL ¼ 0 we observe larger spurious velocity but the drop centre remains immobile and its shape remains nearly
spherical. This is also verified up to 80;000 time steps for this case. We can observe that the introduction of the filtering re-
duces the spurious velocities. The trends observed for the previous 3D test are also confirmed by these 2D simulations. The
same order of magnitude is found for the spurious velocities and their converged maximum magnitude can be estimated
using:
Table 2
Norms of velocity and pressure jumps at Nt ¼ 20000th time step ðDt ¼ 10�5Þ. qL ¼ qG ¼ 4;lL ¼ lG ¼ 1 and r ¼ 0:357.

Filtering ‘1 ‘1 Etotal (%) Epartial (%) E0 (%) CCPU

Nj;NL ¼ 0; 0 0.0054703 0.00023591 10.1 8.5 8.7 1
Nj;NL ¼ 6;0 0.0021841 0.00019679 5.2 2.1 1.9 1.0029
Nj;NL ¼ 12;0 0.0014175 0.00014107 4.2 0.8 0.7 1.0061
Nj;NL ¼ 16;0 0.0012164 0.00011994 3.8 0.4 0.3 1.0079

Nj;NL ¼ 12;6 0.0010234 0.000083260 6.6 2.7 0.6 1.0090
Nj;NL ¼ 12;12 0.00081147 0.000043934 8.7 4.3 1.7 1.0122
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‘1 � 0:004r=l ð30Þ
which gives ‘1 
 0:0015. The effect of the number of smoothing steps is found to have more effect on the converged 2D val-
ues. We clearly observe that the magnitude of the spurious velocities is reduced with the increase of both Nj and NL. This
tendency is also observed for the precision of the pressure jump that is improved with increasing Nj. The effect of NL is
clearly to reduce the precision for the pressure but its effect is not perceptible for NL 6 6. For this test case, the recommended
chose is obtained for Nj � 12 and NL � 6 to optimize both the reduction of spurious currents and the pressure jump
precision.

The CPU cost reported in Table 2 indicates that the smoothing procedure is not expensive. The relative additional cost can
be estimated by CCPU � 1þ 0:0005ðNj þ NLÞ. Note that this evolution has been confirmed by doing additional simulations for
larger value of Nj and NL, typically of order 100.

4.3. Circular drop at equilibrium for liquid/gas system

The third test case is for fluid properties and dimensions also considered in the rest of the paper, i.e. millimetric liquid
drops in a gas. For this test, the surface tension is r ¼ 0:072 N=m, the viscosity and density are lL ¼ 10�2 Pa s; lG ¼
10�5 Pa s;qL ¼ 103 kg=m3 and qL ¼ 1 kg=m3 so that the viscosity and density ratio are, respectively lL=lG ¼ 103 and
qL=qG ¼ 103. A circular drop of radius R0 ¼ 1 mm is centered in the domain. The corresponding Ohnesorge number is
Oh ¼ ðl2=rqR0Þ1=2 
 0:0037. The size of the computational domain is Lx 	 Ly ¼ 4	 4 mm2. The boundary conditions and
the initial condition are kept unchanged, a zero velocity being imposed on the boundaries. Different grids with uniform spac-
ing are considered: Dx ¼ Dy ¼ Lx=96 ¼ R0=24;Dx ¼ Dy ¼ Lx=144 ¼ R0=36;Dx ¼ Dy ¼ Lx=192 ¼ R0=48 and Dx ¼ Dy ¼
Lx=288 ¼ R0=72. Different time steps are also tested: Dt ¼ 10�5 s; Dt ¼ 5	 10�6 s; Dt ¼ 10�6 s and Dt ¼ 10�7 s.

Table 3 gives the effect of the filtering on the ‘1 and the ‘1 norms of the spurious velocities and on the error for the jump
in pressure for Dx ¼ Dy ¼ Lx=96 ¼ R0=24 and Dt ¼ 10�6 s. The number of time steps is Nt ¼ 20;000 in order to obtain the con-
vergence of the simulations. For Nj ¼ NL ¼ 0, we observe the deformation of the drop and its migration due to the amplifi-
cation of the spurious velocities for Nt > 20;000. The introduction of the filtering stabilizes the calculation. The magnitude of
the spurious currents are found to be correctly estimated by the correlation (30) ‘1 � 0:004r=l 
 0:029. Concerning the ef-
fect of the successive filtering, the tendencies observed for the previous 2D test case are also confirmed. E0 and Epartial have
very close values smaller than Etotal. Fig. 4 presents the pressure profile versus the coordinate x at the position y ¼ 2 mm cor-
responding to the position of the drop center. The effect of Nj is presented in Fig. 4(a) for NL ¼ 0 while Fig. 4(b) reports the
effect of NL for Nj ¼ 12. We observe that an increase of successive smoothing tends to increase the size of the numerical
transition for the pressure across the interface, resulting in an increase of the pressure inside the drop.

Table 4 reports the effect of the grid spacing for Dt ¼ 10�6 s and Nj;NL ¼ 12;6. We observe that the order of magnitude of
the spurious currents is not significantly different between the less refined grid Dx ¼ Dy ¼ L=48 ¼ R0=12 and the more re-
fined grid Dx ¼ Dy ¼ L=288 ¼ R0=72. The values of the spurious currents are slightly decreased when the number of cells
per radius is increased. The evolution of the error Etotal versus the grid spacing clearly indicates a precision close to first order.
The error E0 based on the value of the pressure at the drop center is found to be close to second-order, in agreement with the
spatial discretization used in the code. This difference between E0 and Etotal seems to be due to the procedure used to solve
the interface (see also [8] who observed a similar trend for rising bubbles in a liquid at rest).

Table 5 shows the effect of the time step for Dx ¼ Dy ¼ L=96 ¼ R0=24 and Nj;NL ¼ 12;6. The number of time steps Nt re-
ported in Table 5 is chosen so that the total time simulated is the same for the four cases, the time steps varying from
Dt ¼ 10�7 s to Dt ¼ 10�5 s. We observe that the value of the time step has a very small effect on the magnitude of the spu-
rious currents. Their magnitude is slowly increasing with the decrease of the time step, certainly resulting from the increase
of the number of iterations used to calculate the solution at the same final time.

4.4. Circular cap drop at equilibrium wetting a plane surface for liquid/gas system

The last test case considers a drop wetting a surface for different values of the contact angle. We consider different sit-
uations from a wetting surface hS ¼ 10� to a non wetting surface hS ¼ 170�. The volume of the drop pR2

0 is the same for all
f the capillary filtering on the converged norms of the spurious velocity and the pressure jump for Dx ¼ Dy ¼ L=96 ¼ R0=24 and Dt ¼ 10�6 s
0000Þ. lL ¼ 10�2 Pa s; lG ¼ 10�5 Pa s; qL ¼ 103 kg=m3

;qL ¼ 1 kg=m3 and r ¼ 0:072 N=m.

ring ‘1 ‘1 Etotal (%) Epartial (%) E0 (%)

L ¼ 0;0 – – – – –
L ¼ 6;0 0.036821 0.0061711 5.4 2.7 2.6
L ¼ 12; 0 0.026275 0.0042933 4.3 1.3 1.3
L ¼ 16; 0 0.027352 0.0040360 3.9 0.9 0.9

L ¼ 12;6 0.036574 0.0072896 3.9 0.7 2.4
L ¼ 12;12 0.038688 0.0076322 4.1 0.1 4.8



Fig. 4. Evolution of pressure normalized by DPexact ¼ r=R0 versus x=R0 for y ¼ 2 mm. Dx ¼ Dy ¼ L=96 ¼ R0=24 and Dt ¼ 10�6 s ðNt ¼ 20;000Þ.
lL ¼ 10�2 Pa s; lG ¼ 10�5 Pa s; qL ¼ 103 kg=m3 and qL ¼ 1 kg=m3. (a) Effect of Nj for NL ¼ 0: � Nj ¼ 6;} Nj ¼ 12 and M Nj ¼ 16. (b) Effect of NL for
Nj ¼ 12: �NL ¼ 0;� NL ¼ 6 and } NL ¼ 12.

Table 4
Effect of the grid spacing on the converged norms of the spurious velocity and the pressure jump for Nj;NL ¼ 12;6 and Dt ¼ 10�6 s ðNt ¼ 20;000Þ.
lL ¼ 10�2 Pa s; lG ¼ 10�5 Pa s; qL ¼ 103 kg=m3 and qL ¼ 1 kg=m3.

Grid spacing ‘1 ‘1 Etotal (%) E0 (%)

Dx ¼ Dy ¼ L=48 ¼ R0=12 0.062761 0.012896 6.6 6.9
Dx ¼ Dy ¼ L=96 ¼ R0=24 0.036574 0.0072896 3.9 2.4
Dx ¼ Dy ¼ L=144 ¼ R0=36 0.027781 0.0049319 3.0 1.3
Dx ¼ Dy ¼ L=192 ¼ R0=48 0.022240 0.0040500 2.7 0.8
Dx ¼ Dy ¼ L=288 ¼ R0=72 0.018444 0.0033273 2.1 0.3

Table 5
Effect of the time step on the norms of the spurious velocity and the pressure jump for Nj;NL ¼ 12;6 and Dx ¼ Dy ¼ L=96 ¼ R0=24.
lL ¼ 10�2 Pa s; lG ¼ 10�5 Pa s; qL ¼ 103 kg=m3 and qL ¼ 1 kg=m3.

Time step ‘1 ‘1 Etotal (%) E0 (%)

Dt ¼ 10�5s ðNt ¼ 2000Þ 0.032466 0.0063115 3.8 2.3

Dt ¼ 5	 10�6s ðNt ¼ 4000Þ 0.034474 0.0068387 3.8 2.4

Dt ¼ 10�6s ðNt ¼ 20;000Þ 0.036574 0.0072896 3.9 2.4

Dt ¼ 10�7s ðNt ¼ 200;000Þ 0.036993 0.0073866 3.9 2.5
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cases and corresponds to a disc of radius R0 ¼ 1 mm. Hence, the radius R of the circular cap that satisfies the contact angle hS

with the wall and the jump in pressure DP are given by
R ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

hS � sinhS coshS

r
; DP ¼ r

R

These conditions are imposed as initial conditions so that the exact solution is zero velocity for all time. The dimension of the
numerical domain is Lx 	 Ly where Lx is twice the drop width (Lx ¼ 4RsinhS for hS 6 90� and Lx ¼ 4R otherwise) and
Ly ¼ 2Rð1� coshSÞ is twice the drop height. The size of the grid spacing is defined so that the drop height corresponds to
40 cells. The time step, the number of time steps and the number of iterations for the capillary filtering are
Dt ¼ 10�6 s;Nt ¼ 20;000 and Nj;NL ¼ 12;6, respectively.

Table 6 reports the value of the ‘1 and ‘1 norms and the values of the errors Etotal; Epartial and E0. We observe that the order
of magnitude of the spurious currents are not significantly changed compared to the isolated drop. Their maximum value can
be estimated by relation (30) obtained in unbounded situations (‘1 � 0:004r=l 
 0:029). We do not observe a significant
effect of the procedure used to impose the contact angle on the development of spurious velocities. It can be seen that their
magnitude seems to increase with the increase of the value of the contact angle due to the increase of the drop curvature.
Considering the pressure jump we observe the opposite evolution: the error increases when the contact angle decreases. For
h ¼ 10� a particular behavior is observed since the error E0 has comparable value compared with the other angles (around



Table 6
Norms of velocity and pressure jumps at Ntps ¼ 20;000th time step ðDt ¼ 10�6 s) for Nj;NL ¼ 12;6 and Dx ¼ Dy ¼ L=192 ¼ R0=48.
lL ¼ 10�2 Pa s; lG ¼ 10�5 Pa s; qL ¼ 103 kg=m3 and qL ¼ 1 kg=m3.

Contact angle ‘1 ‘1 Etotal (%) Epartial (%) E0 (%)

h ¼ 10� 0.017 0.0011 15 13 4.2
h ¼ 30� 0.023 0.0032 5.8 5.1 3.8
h ¼ 60� 0.026 0.0035 3.4 3.6 3.2
h ¼ 90� 0.039 0.0066 4.5 0.4 1.5
h ¼ 120� 0.050 0.0078 6.9 2.8 0.96
h ¼ 150� 0.068 0.0088 7.1 3.2 1.3
h ¼ 170� 0.085 0.011 7.4 3.4 1.6

Fig. 5. Pressure profiles normalized by r=R for different contact angles. � hS ¼ 10�;� hS ¼ 30� ;} hS ¼ 60� ;M hS ¼ 90� ; / hS ¼ 120�;O hS ¼ 120� and
. hS ¼ 170� . (a) Pressure profile normal to the wall at the drop center ðx ¼ 0Þ. (b) Pressure distribution on the wall ðy ¼ 0Þ.

J.-B. Dupont, D. Legendre / Journal of Computational Physics 229 (2010) 2453–2478 2463
some percents) while Etotal and Epartial have much bigger values around 15%. The explanation is given by the pressure profiles
inside the drop.

The pressure profile in the y-direction perpendicular to the wall at the drop center (x ¼ 0) and the pressure distribution
on the wall ðy ¼ 0Þ are reported in Fig. 5. We observe that the pressure profile is very close to the exact solution for all the
angles except for h ¼ 10�. For this angle the normal profile presents a satisfactory evolution while the wall profile is not uni-
form near the contact angle. We have changed the number of filtering Nj and NL but for h ¼ 10� the amplitude of the spatial
oscillations do not significantly vary. This pressure profile is also stable in time, the simulation has been run until
Nt ¼ 200;000 time steps. This particular behavior of the pressure at the vicinity of the contact line only appears at small con-
tact angle. An implicit treatment of (20) is a possible improvement to reduce the spatial oscillation of the pressure.

5. Equilibrium shape of a drop released on a wall

In this section, we consider some validations of the implementation of the static angle in bidimensional (plane) configura-
tions. For the simulations reported in this section the contact angle is imposed to be constant and equal to the static angle hS. We
consider the shape at equilibrium of a drop released on a horizontal wall. The drop is initially a semicircle and the initial contact
angle with the wall is equal to 90� (Fig. 6(a)). If the contact angle hS is different from the initial angle, the contact line moves and
the drop deforms to respect the contact angle hS. The drop is also flattened due to gravity. Considering the density ratio between
the liquid and the surrounding gas, the final shape of the drop depends on two parameters, namely the static angle hS and the
Eotvos number Eo ¼ qLgR2

0=r based on the initial radius R0, the liquid density qL, the gravity g and the surface tension r.

5.1. Absence of gravity ðEo ¼ 0Þ

The main interest of the simplified situation Eo ¼ 0 is that the static shape of the drop is a circular cap that respects the
contact angle hS with the wall (Fig. 6(b)). By conservation of the volume of the drop, it is possible to geometrically calculate at
equilibrium the radius of the circle R, the length of spreading L, the height of the drop e and the pressure difference DP be-
tween the drop and the surrounding gas:



Fig. 6. (a) Initial shape of the drop released on the wall. (b) Definition of the characteristic parameters for the final shape for Eo ¼ 0.

Fig. 7. Final drop shape for hS ¼ 20�; hS ¼ 50� ; hS ¼ 110� and hS ¼ 170� . Dashes lines: theoretical shape. Continuous line: numerical simulations ðC ¼ 0:5Þ for
Dx ¼ Dy ¼ R0=40 and Nj ¼ NL ¼ 16.
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R ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2ðhS � sinhS coshSÞ

r
; L ¼ 2RsinhS; e ¼ Rð1� coshSÞ

DP ¼ r=R ð31Þ
The numerical domain is a regular grid in the Cartesian coordinates ðx; yÞwith �3R0 6 x 6 3R0 and 0 6 y 6 2R0; x and y being
parallel and normal to the wall, respectively. Forty cells describe the initial radius R0 of the drop ðDx ¼ Dy ¼ R0=40Þ. The time
step is Dt ¼ 1:5	 10�4 s. After being released on the wall with its initial shape (Fig. 6(a)) a drop oscillates until it reaches its
final shape. Some comparisons with the theoretical shape are reported in Fig. 7 for different contact angles
ðhS ¼ 20�; hS ¼ 50�; hS ¼ 110�; hS ¼ 170�Þ and the following physical parameters: R0 ¼ 0:01 m; qL ¼ 1000 kg m�3 and
lL ¼ 10�2 Pa s for the liquid, qG ¼ 1 kg m�3 and lG ¼ 10�5 Pa s for the gas and r ¼ 0;072 N m�1. Note that for hS ¼ 170�

the initial impulse generated by the discontinuity of the contact angle generates the drop detachment from the wall. For this
situation, the initial condition is the equilibrium situation obtained for hS ¼ 130�. For all the contact angles hS, the compar-
ison is qualitatively very satisfactory with the theoretical shape given by (31). This is confirmed by the mean difference be-
tween the numerical solution and the theoretical prediction defined by:
E ¼ 1
N

XN

k¼1

xC¼0:5
k � xth

�� ��
R

ð32Þ
where N is the number of nodes discretizing the interface located at xC¼0:5
k ; yC¼0:5

k is the corresponding position of the interface
and xth is the theoretical x-coordinate of the interface at yC¼0:5

k . For the shapes reported in Fig. 7, the mean difference is
1:7%; 0:3%;2% and 2:2% for hS ¼ 20�; hS ¼ 50�; hS ¼ 110� and hS ¼ 170�, respectively.

Fig. 8 reports the numerical values of the length of spreading L, the drop height e and the pressure jump DPtotal;DPpartial and
DP0 versus the contact angle hS. As suggested by the shape reported in Fig. 7, the comparison with the theoretical expression
is found to be very satisfactory for both hydrophobic and hydrophilic situations. The best precision is obviously observed for
hS ¼ 90 because the drop remains immobile and there is no displacement of the contact line. The best description of the pres-
sure jump evolution is given by DPpartial and DP0. As previously observed, this figure illustrates the loss in precision at low and
large contact angles. For hS ¼ 10�, the pressure distribution is non uniform near the contact line (see Section 4.4) and induces
significant errors in the drop shape and the pressure jump.
5.2. Spreading effect due to gravity

We consider the effect of gravity on the shape of the drop. Due to the combination of gravity that spreads the drop and
surface tension that maintains its sphericity, the drop shape evolves in order to also satisfy the contact angle at the wall. We
define the thickness e of the drop as the maximum vertical distance between the wall and the interface. For Eo� 1, the prob-



Fig. 8. (a) Geometrical characteristic of the drop versus the contact angle hS . � length of spreading L and � drop height e. (b) Pressure inside the drop P
versus the contact angle hS . � DPtotal;� DPpartial and M DP0. — theoretical solutions given by (31).

Fig. 9. Normalized thickness e� ¼ e=e0 of a drop at rest on a hydrophilic wall ðhS ¼ 50�Þ. �: numerical simulations, ��� Eq. (33), �:� :� Eq. (34).

Fig. 10. Normalized thickness e� ¼ e=e0 of a drop at rest on a hydrophilic wall ðhS ¼ 130�Þ. �: numerical simulations, ��� Eq. (33), �:� :� Eq. (34).
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lem is controlled by the surface tension and the drop is a circular cap with angle hS. The thickness of the drop deduced from
(31) is then:
e0 ¼ R0ð1� coshSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2ðhS � sinhScoshSÞ

r
ð33Þ
For Eo� 1, the drop spreads under the gravity effect and forms a puddle whose thickness is directly proportional to the cap-
illary length:
e1 ¼ 2
ffiffiffiffiffiffiffiffi
r

qLg

r
sin

hS

2

� �
ð34Þ
The shape of the drop is computed for a large range of Eotvos numbers varying from situations controlled by surface tension
ðEo ¼ 0:001Þ to situations controlled by gravity ðEo ¼ 50Þ. The simulations are carried out using Dx ¼ Dy ¼ R0=40 and
Nj ¼ NL ¼ 16. The time step is Dt ¼ 1:5	 10�4 s. The evolution of the thickness of the drop is plotted versus the Eotvos num-
ber in Fig. 9 for a hydrophilic wall ðhS ¼ 50�Þ and in Fig. 10 for a hydrophobic wall ðhS ¼ 130�Þ. The simulations are found to
be in very good agreement with the two asymptotic solutions (33) and (34). As expected the transition between the circular
cap and the puddle is observed to occur around Eo ¼ 1 when gravity and surface tension effects are of same order of
magnitude.
6. Partial wetting dynamics

The objective of this section is to test the method for moving contact lines. For this purpose we consider the axisymmetric
spreading of a droplet for a partially wetting liquid. Some preliminary tests have been performed in order to investigate the
convergence of the results with the spatial and time refinement. The simulations are compared with the experiments of [33].
6.1. Statment of the problem

The problem considered consists in measuring the spreading of a drop initially placed on a wall (Fig. 11). For complete
wetting conditions [39] showed that their experimental measurement of the dimensionless drop base area A can be well cor-
related by a power law A ¼ Ksn where s ¼ tr=lV1=3 is the dimensionless time using the drop volume V. The theoretically
predicted values and experimental measurement of the power n are within the range of 0:2� 0:29 [33]. For partially wetting
liquids [59] has shown using different fluids that the dimensionless time s is also the pertinent time to describe the spread-
ing of the drop with n ’ 0:28. Lavi and Marmur [33] performed experiments for different liquids partially wetting a coated
silicon wafer. They represented their experimental data by:
A
Af
¼ 1� exp � K

Af
sn

� �
ð35Þ
where Af is the final, equilibrium value of the wet (solid–liquid) area. Note that this representation of the data reduces to the
previous power law for complete wetting in the limit of complete wetting, where the final wet area at equilibrium is infinite
ðAf !1Þ.

Numerical axisymmetric simulations are compared with three experiments of [33]. The corresponding physical proper-
ties are given in Table 7. We consider a drop of radius R0 ¼ ð3V=4pÞ1=3 ¼ 1 mm initially placed on a wall. We numerically
impose an initial surface of contact A0 corresponding to a drop center located at the distance 0:95R0 from the wall. The cor-
responding initial contact angle is thus hdð0Þ � 162�.
θd
(t)

r(t)

Fig. 11. Initial condition.



Table 7
Physical properties and experimental values for K and n from [33].

Case qL ðkg=m3Þ lL ðPa sÞ r ðN=mÞ hS La K n

LM2 773 3:07	 10�3 0.027 35:9� 2210 0.866 0.736

LM3 809 34:0	 10�3 0.032 41:5� 20 0.471 0.699

LM5 974 62:2	 10�3 0.041 54:2� 10 0.352 0.775

Fig. 12. Effect of the time step on the spreading for case LM3 using a no-slip condition ðk ¼ 0Þ. (a) Contact line position xcl. (b) Contact line velocity Ucl. —
Dt ¼ 5	 10�6 s, – - – - – Dt ¼ 2	 10�6 s, –.–.– Dt ¼ 10�6 s, — — — Dt ¼ 4	 10�7 s, – – – Dt ¼ 10�7 s.
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6.2. Preliminary tests

Some preliminary tests are presented in this section in order to determine the grid refinement and the time step used for
the comparison with experiments. In order to characterize the effect of the grid refinement, the grid size is reduced in the
vicinity of the wall. A geometrical progression makes the connection with a regular grid where D ¼ Dx ¼ Dy ¼
R0=50 ¼ 20 lm. The size of the refined zone is R0=5 and three different refined grids are compared with the regular grid
called GRID1. Grid refinement at the wall are D2 ¼ D=2 ¼ R0=100 ¼ 10 lm ðGRID2Þ;D5 ¼ D=5 ¼ R0=250 ¼ 4 lm ðGRID5Þ and
D10 ¼ D=10 ¼ R0=500 ¼ 1 lm ðGRID10Þ, respectively. Typically, the grid spacing has been divided by 2, 5 and 10 near the wall.
The index used in the name of the grid indicates the grid refinement relative to the regular grid. The connection with the
regular part of the grid where Dx ¼ Dy ¼ R0=50 has been made so that the ratio between two successive cells is less than
1.1. The number of nodes used to describe the refinement zone are 15, 20 and 25 for GRID2;GRID5 and GRID10, respectively.

The effect of the time step is presented for the regular grid GRID1 and a no-slip condition at the wall ðk ¼ 0Þ. The case LM3
is considered. Fig. 12 presents the evolution of the drop spreading obtained for different time steps: Dt ¼ 5	 10�6 s;
Dt ¼ 2	 10�6 s; Dt ¼ 10�6 s; Dt ¼ 4	 10�7 s and Dt ¼ 10�7 s. Fig. 12(a) and (b) report the time evolution of the contact line
position xcl and the contact line velocity Ucl, respectively. The evolution of the contact line is found to converge with the time
step, the main effect being observed on the evolution of the velocity. The maximum difference is observed at approximately
t � 10�4 s and the maximum values are respectively 9:55 cm=s; 8:67 cm=s; 8:35 cm=s; 8:17 cm=s and 8:08 cm=s. As shown in
Fig. 12(a), the effect is small on the wetted area since the velocities are very close for time t > 2	 10�2.

The effect of the mesh refinement on the drop spreading is reported in Fig. 13 for the case LM3 using a no-slip condition
(k ¼ 0). The time step used for the computation is Dt ¼ 10�7 s. We observe in Fig. 13 that the refinement does not change
significantly the shape of the time evolutions. Fig. 13(a) shows an acceptable convergence with the grid spacing for the con-
tact line position xcl. The curves are translated to the right with increasing the refinement indicating a reduction of the
spreading velocity with the refinement. This velocity reduction is observed at the beginning of the spreading, the evolutions
being independent on the grid spacing for t > 2	 10�2 (see Fig. 13(b)). The spreading is generated by the initial impulse
transmitted to the drop due to the initial imbalance at the contact line. The velocity reaches a maximum just after the begin-
ning of the spreading around t � 10�4 s and then decreases until the stabilization of the drop. Fig. 13(b) clearly shows that
the grid convergence is not satisfactory when the velocity evolution is considereed. Indeed, the grid convergence cannot be
achieved using a no-slip condition due to the increase of the wall shear rate with mesh refinement [2].

Fig. 14 presents the effect of refinement when the Navier slip condition is imposed using the slip length k ¼ 0:01R0. The
selected slip length corresponds to D=2. A time convergence study has first been performed for the four grids in order to
determine the time step to be used for the comparison. The corresponding time steps are from the less refined to the more
refined grid Dt ¼ 10�7 s; Dt ¼ 10�7 s; Dt ¼ 0:5	 10�7 s and Dt ¼ 0:2	 10�7 s. The figure shows that for the four grids the



Fig. 13. Effect of grid refinement on the spreading for case LM3 using a no-slip condition ðk ¼ 0Þ. — D, — — — D2, – – – D5, . . . D10. (a) Contact line position xcl.
(b) Contact line velocity Ucl .

Fig. 14. Effect of grid refinement on the spreading for case LM3 using the slip length k ¼ 0:01R0. — D, — — — D2, – – – D5, . . . D10. – - – - – - – No-slip condition
k ¼ 0. (a) Contact line position xcl . (b) Contact line velocity Ucl .
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difference is not perceptible for the contact line position xcl. Again difference between cases are revealed by comparing the
velocity of the contact line. The grid convergence is very satisfactory when a slip length is used. For comparison, the evolu-
tion obtained for the less refined grid GRID1 with a no-slip condition (k ¼ 0) and Dt ¼ 10�7 s is reported. Volume fraction
being advected by cell face normal velocities, the contact line velocity is the velocity calculated at the intermediate length
scale D=2 when a no-slip condition is imposed. For GRID1, this distance ð0:01R0Þ corresponds to the slip length imposed in the
simulations. The comparison shows that, strictly speaking, a no-slip condition k ¼ 0 with a grid size D is not equivalent to a
slip condition with the slip length k ¼ D=2. The slip length k is an input parameter in the method proposed here. As shown by
Spelt [55] and Afkhami et al. [2], the results for a given value of k appear to be convergent with respect to the grid spacing
when the slip length is resolved. The objective of this section is not a discussion about the optimal value of the slip length for
the simulation (see [55]). As shown in Fig. 14(a), the difference between k ¼ 0 and k ¼ 0:01R0 is not noticeable when con-
sidering the contact line position evolution for the physical problem considered here. The value k ¼ 0:01R0 has been used
for the comparison with experiments reported bellow.

6.3. Comparison with experiments

In this section, simulations are compared with the experiments of [33] that report the time evolution of the contact line.
The physical properties are reported in Table 7 for the cases LM2; LM3 and LM5. The simulations reported in this section are
performed using Dt ¼ 10�7 s and k ¼ 0:01R0. The grid is the uniform grid GRID1ðD ¼ R0=50Þ. Fig. 15 reports the time evolution
of the dimensionless wetted area A� ¼ ðA� A0Þ=ðAf � A0Þ. The agreement with experiments is found to be very satisfactory
for the two cases LM3 and LM5 while a significant difference is observed for the case LM2. For LM2, the spreading is found to
be slower at short time, faster at larger time and characterized by oscillations at the end of the spreading. In order to make



Fig. 15. Evolution of the dimensionless wetted area A� versus the dimensionless time s. (a): case LM2. � experiments, — Simulation using the dynamic
model h ¼ hdðtÞ, . . . Simulation using a constant contact angle h ¼ hS . (b) Case LM3: � experiments, ��� Simulation using the dynamic model and . . .

Simulation using a constant contact angle h ¼ hS . Case LM5: — simulations with dynamic model and � experiments.

Fig. 16. (a) Evolution of the capillarity number Cacl ¼ lLjUclj=r and (b) evolution the Reynolds number Recl ¼ qLjUcljr=lL versus the dimensionless time s for
the cases: ���LM2, — LM3.
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sure that the difference for the case LM2 is not due to the numerical parameters, the grid and time step convergences have
been performed and the behaviors are identical to those reported in Section 6.2 for the case LM3. The grid refinement induces
a light translation to the right for the time evolution of the contact line position xcl but this effect increases the difference
with the experimental values. The time step refinement has no noticeable effect on the time evolution of xcl. We have also
performed additional simulations by changing the drop size and its initial position but no significant effect has been ob-
served on the time evolution of xcl. The drop diameter has been divided by 2 (volume divided by 8) and the drop has been
initially released at two other positions closer to the wall, 0:97R0 and 0:98R0.

The inspection of the physical parameters reveals that the case LM2 is characterized by a smaller viscosity of the fluid.
This difference can be expressed using the Laplace number La ¼ 1=Oh1=2 ¼ qLrR0=l2

L which only depends on the physical
properties of the problem. This number compares visco-capillarity effects and inertio-capillary effects. The values of La re-
ported in Table 7 reveals that case LM2 can be considered as inertial while the cases LM3 and LM5 are viscous. This obser-
vation leads us to question the validity of the dynamics model used to describe the contact angle. As explained before this
model is theoretically valid if Recl ¼ qLjUcljr=lL � 1 and Cacl ¼ lLjUclj=r� 1, [11,33] showing experimentally that the limit
of validity can be extended up to Cacl K 0:1. The corresponding value of Recl and Cacl during the spreading are reported in
Fig. 16 for cases LM2 and LM3. We clearly observe that the conditions Recl � 1 and Cacl � 1 are satisfied for LM3 while
Recl ¼ Oð1Þ during the drop spreading for LM2. Consequently, the conditions required for the use of the dynamic model se-
lected for this study are not satisfied for LM2. A correct description of the case LM2 needs the implementation of an inertial
model valid for such contact line Reynolds numbers. Our simulation demonstrates the crucial role of the selection of the dy-
namic model used to simulate a moving contact line.
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Fig. 16 illustrates the drop oscillation for the LM2 case before the contact line stabilization. The drop oscillates because of a
lower liquid viscosity resulting in a volume oscillation of the drops until all the kinetic energy transmitted to the drop being
dissipated. We also observe in this figure that the contact line velocity does not converge to zero but stabilizes around a non
zero value. These residual oscillations are characterized by the same Capillary number Cacl � 2	 10�5 for the two cases LM2
and LM3 while the corresponding Reynolds numbers differ by two orders of magnitude. This is characteristic of the presence
of spurious currents generated by the discretization of the surface tension. The residual velocities are discussed in Section 6.5.

6.4. Discussion: dynamic angle versus static angle

In order to stress the importance of the choice of the dynamic model to simulate moving contact lines, the case LM3 is
simulated by imposing a constant contact angle equal to the static contact angle h ¼ hS during the spreading of the drop,
all the others physical and numerical parameters being left unchanged. Note that the use of a no-slip condition ðk ¼ 0Þ in-
stead of the slip condition k ¼ 0:01R0 gives very similar results. The shape of the drop during the spreading is compared in
Fig. 17 with the results obtained using the dynamic model. We clearly observe a different behavior for the evolution of the
shape of the drop. This difference is confirmed by the time evolution of the dimensionless wetted area A� reported in
Fig. 15(b). The difference between the two simulations is spectacular. The spreading of the drop is observed to be faster when
imposing the static angle. One order of magnitude is found between the two characteristic times necessary for the complete
spreading of the drop. This test shows that it is not possible to reproduce the experiments by imposing the static contact
angle with or without a slip condition. This stresses the importance of the contact angle model used for doing simulations
of moving contact line. The same comparison is done for the LM2 case in Fig. 15(a). The evolution is also observed to be faster
by imposing a constant contact angle but the difference between the static and the dynamic models is found to be less sig-
nificant in this case.

6.5. Stabilization of the drop: residual spurious velocities

Finally, we characterize the effect of residual spurious currents shown in Fig. 16. For the 3 cases considered we observe a
residual oscillation of the contact line but we do not observe contact line destabilization. This is illustrated in Fig. 18 for the
Fig. 17. Shape of the spreading drop (case LM3Þ at time s ¼ 1:46;2:92;4:38;5:84;11:7 and 21:9. Left: with dynamic model to describe the contact angle
ðh ¼ hdðtÞÞ. Right: without dynamic model ðh ¼ hSÞ.

Fig. 18. Stabilization of the contact line at the end of the spreading for the case LM3. (a) Position of the contact line xcl (at C ¼ 0:5Þ normalized by the initial
drop radius R0 versus the dimensionless time s. (b) Evolution of the residual velocities normalized by the maximal velocity Vmax . — jUclj=Vmax , — — ‘1 norm,
– – – ‘1 norm.



Table 8
Characteristic of the residual contact line oscillations.

Case acl=xcl Ucl (m/s) ‘1 (m/s) ‘1 (m/s)

LM2 0.00036 0.00021 0.028 0.0016
LM3 0.00057 0.0000041 0.0046 0.00029
LM5 0.00095 0.0000022 0.0060 0.00021
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case LM3. Fig. 18(a) shows the evolution of the position of the interface xclðC ¼ 0:5Þ normalized by the initial drop radius R0.
We clearly observe that a constant position is reached and remains stabilized during more than 106 time steps. The contact
line stabilizes for xcl=R0 
 1:8, value 4% lower than the exact one. We can also notice some very small oscillations with a
magnitude acl less than 0:01% of the mean stabilized position xcl. The magnitude of the velocity jUclj of the contact line is
presented in Fig. 18(b) normalized by the maximum velocity Vmax measured during the spreading process. We observe that
Ucl stabilizes around� 2	 10�4 Vmax. We have also reported the measurement of the residual velocity in all the domain using
the ‘1 and ‘1 norms. We observe that the maximum value of spurious velocities stabilizes around
� 4	 10�2 Vmax � 0:004 m=s which is close to the estimate (30) ‘1 � 0:004r=l 
 0:0038 m=s proposed in Section 4. The
other norm ‘1 gives a measure in an average sense for the computational domain. The corresponding stabilized value is
� 2	 10�3 Vmax. The velocity of the contact line is thus one order of magnitude less than the ‘1 norm and two orders of mag-
nitude less than the ‘1 norm. The values of the amplitude acl, the contact line velocity Ucl, the norms ‘1 and ‘1 of the residual
velocities are reported in Table 8 for the three cases LM2; LM3 and LM5. The same trend is observed for the three simulations.

6.6. Conclusion

The results presented in this section validate the numerical implementation of the dynamic model chosen to describe
moving contact lines. They also stress the importance of the physical model used in numerical simulations to reproduce
spreading of drops: (i) the use of a constant static angle (with a no-slip condition or a slip condition) is not appropriate
and give significant differences. Our simulations indicate that the use of a constant angle induces a faster spreading, (ii)
the dynamic model has to be used with respect to its domain of validity (i.e. viscous or inertial regime).
7. Drop on an inclined wall

We consider here the two-dimensional deformation of a drop placed on a horizontal wall which is slowly inclined. We
denote by a the angle between the wall and the initial horizontal position. An hemi-circular drop is initially placed on
the wall (see Fig. 6) and its shape evolves to satisfy the equilibrium between gravity, surface tension and the condition im-
posed by the contact angle at the wall. After the stabilization of the drop, the wall is inclined slowly with a characteristic
time larger than the capillarity times defined using viscosity tv 
 lLR0=r or using inertia ti 
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0=r
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ensuring that the
shape of the drop has the time to adapt to the instantaneous inclination of the wall (i.e. following a quasi-static evolution).
The dimensions of the numerical domain are L	 H ¼ 5 mm	 1 mm discretized by 400	 80 cells. The drop is initially a cir-
cular cap of radius R0 ¼ H=2 described by 40 cells. The time step is Dt ¼ 5	 10�5 s. The physical properties used for the fol-
lowing calculations are qL ¼ 1000 kg=m3

;lL ¼ 10�2 Pa s; qG ¼ 1 kg=m3
;lG ¼ 2:10�5 Pa s and g ¼ 9:81 m=s2. The surface

tension is r ¼ 0:036 Nm�1;r ¼ 0:072 Nm�1 or r ¼ 0:144 Nm�1 so that the Eotvos number Eo ¼ qLgR2
0=r takes the values

Eo ¼ 0:5;1 or 2, respectively. Different hysteresis angles have been considered: ðhA; hRÞ ¼ ð80�;100�Þ; ð60�;120�Þ and
ð40�;140�Þ.

Fig. 19 shows the shape of the drop when it starts to slide for the different Eotvos numbers and hysteresis considered. The
results reveals the strong influence of the parameters ðhA; hR and Eo) on the critical value of a and on the drop shape. Indeed
for Eo ¼ 2, the drop always starts to move for a critical inclination less than 90� while for Eo ¼ 0:5 the drop can stay immobile
on the wall up to the vertical position if the hysteresis is large enough. The balance between gravity and capillarity gives the
theoretical inclination angle ath with the horizontal line corresponding to the motion of the drop [19,23]:
qL AL g sinath ¼ r ðcoshR � coshAÞ ð36Þ
where AL is the area of the two-dimensional drop. The critical angle is thus dependent on the Eotvos number Eo ¼ qLgR2
0=r:
sinath ¼
2

pEo
ðcos hR � cos hAÞ ð37Þ
The numerical results obtained for the critical angle are compared with the relation (37) in Fig. 20. A very good agreement is
found.

Fig. 21 shows the evolution of the shape of the drop during the wall inclination for Eo ¼ 0:5 and ðhA; hRÞ ¼ ð60�;120�Þ. The
different shapes reported are: the initial hemi-circular shape (time t0), the initial stabilized shape corresponding to the
beginning of the inclination of the wall (time t1) and the shape when the wall is vertical (time t2). In this situation the initial
circular shape and stabilized shape at the beginning of the wall inclination are nearly the same. During all the wall



Fig. 19. Shape of the drops at the critical inclination corresponding to beginning of the sliding.

Fig. 20. Critical angle ath versus ðcos hR � cos hAÞ=Eo. — relation (37). � numerical simulations.

Fig. 21. Drop shape for Eo ¼ 0:5 and ðhR; hAÞ ¼ ð60�;120�Þ. Time t0 (dashed line): initial shape a ¼ 0� , time t1: beginning of the inclination after the
stabilization of the shape of the drop a ¼ 0� , time t2: deformation for a ¼ 90� .
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Fig. 22. Advancing and receding contact angles had ð� � �Þ and hre (—) for Eo ¼ 0:5; ðhR; hAÞ ¼ ð60�;120�Þ versus: (a) the inclination a of the wall, (b) the
Capillary number of the contact line Cacl .

Fig. 23. Evolution the shape of the drop for Eo ¼ 1 and ðhR; hAÞ ¼ ð60�;120�Þ. Time t0 (dashed line): initial shape a ¼ 0� , time t1: beginning of the inclination
after the stabilization of the shape of the drop a ¼ 0� , time t2: the drop starts to slide on the wall for anum ¼ 38� , time t3: position and shape for a 
 60� .
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inclination, the drop is slightly deformed due to the small value of the Eotvos number and no sliding motion is observed. The
corresponding time evolutions of had and hre, the advancing and receding contact angles, respectively, are reported in
Fig. 22(a) versus a. We observe that the drop stabilizes on the horizontal wall for a contact angle close to 100�. Then, when
the wall is inclined, the advancing angle had increases progressively and reaches for a 
 50� the limit angle hA and keeps this
value until the vertical position of the wall is reached. The receding angle hre decreases progressively but never reaches the
limit angle hR. This is the explanation why the drop does not completely slide on the wall although the advancing angle had is
equal to hA. The corresponding evolutions of had and hre are reported in Fig. 22(b) versus the local Capillary number
Cacl ¼ lLUcl=r based on the velocity Ucl of the contact line. We observe that the receding contact line is always immobile
while the advancing contact line slowly starts to move when the advancing angle reaches the limit value hA and then sta-
bilizes for the maximum inclination. The consequence is that the drop is slightly stretched but does not slide on the wall.
In this case the drop is immobile at the vertical inclination because of the receding angle effect.

We show in Figs. 23 and 24 the same plots for a larger Eotvos number (Eo ¼ 1) and the same hysteresis angles. In such
situation the motion starts for a ¼ 38�. We observe in Fig. 23 a significant deformation when the drop starts to move (time
t2). If we continue to incline the wall, the drop slides on the wall and continues to deform as shown by its position and
shapes for a 
 60� (time t3). The evolutions of the advancing had and receding hre angles of the contact line reported in
Fig. 24(a) show that the advancing angle had reaches the limit value hA before hre reaches the angle hR. We observe that
the drop starts to slide on the wall when both had and hre reach the limit angle hA and hR, respectively. When the drop is slid-
ing the angle had (resp. hre) increases (resp. decreases) because of the behavior of the dynamics model given by relation (21).
The corresponding evolutions versus the Capillary number Cacl of the contact angles are reported in Fig. 24(b). It can be seen
that the condition of validity of the dynamic model is satisfied since jCaclj � 10�2 during all the evolution. This figure also
explains why the variations of the advancing had and receding hre angles are not symmetric. The two contact lines are not
moving at the same speed: the advancing line is moving faster (bigger Cacl). As a consequence, the length of the wetted sur-
face increases with time as it can be observed in Fig. 23 by comparing the drop shape at time t2 and t3.

8. Drop subjected to a shear flow

We consider in this section the problem of a drop subjected to a shear flow. A Couette flow and a Poiseuille flow are
considered (Fig. 25). We first compare and validate our simulations with previous numerical works under creeping flow



Fig. 24. Advancing and receding contact angles had ð� � �Þ and hre (—) for Eo ¼ 1; ðhR; hAÞ ¼ ð60�;120�Þ versus: (a) the inclination a of the wall, (b) the
Capillary number of the contact line Cacl .

Fig. 25. (a) Circular drop in a Couette flow and (b) circular drop in a Poiseuille flow.
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conditions. In the second part we present results concerning the drop deformation and migration in a Poiseuille flow and a
criteria is proposed for the drop migration.

8.1. Validation under creeping flow conditions

We first consider the deformation of a drop in a Couette flow (Fig. 25(a)). The objective of this test is to provide additional
information concerning the resolution of the contact angle. For this purpose, we compare our simulations with the results ob-
tained by Schleizer and Bonnecaze [52] using a boundary element method. Note that Spelt [55] obtained a very good agree-
ment with this study using a Level Set approach. A circular cap of liquid that satisfies the static contact angle hS at the wall
(Fig. 25) is initially placed on an immobile wall while the opposite (top) wall moves at a constant velocity UW . We denote
by H the gap between the two walls and e the initial thickness of the drop. This problem is characterized by the ratio
e=H;q1=q2;l1=l2, the capillary number Ca ¼ lUph=rH, the Reynolds Re ¼ qUph2

=lH both based on Uph=H the velocity of
the flow at the top of the drop. For the comparison, the viscosity and the density of the drop are taken to be equal to that of
the surrounding fluid (q1 ¼ q2 ¼ q and l1 ¼ l2 ¼ l), the static contact angle is hS ¼ 60� and e=H ¼ 1=4. The simulations are
performed in a numerical domain of size 6e	 4e described with different grids composed of 60	 40;120	 80 or 180	 120
cells, corresponding to 10, 20 and 30 cells in the initial drop height e. The simulations are compared against the Stokes solutions
obtained by Schleizer and Bonnecaze [52] for Ca ¼ 0:05;Ca ¼ 0:1 and Ca ¼ 0:15. The corresponding Reynolds numbers are
0:01;0:02 and 0:03, respectively. A large hysteresis window ð10� � 170�Þ is imposed in order to make sure that the drop re-
mains fixed on the wall for the comparison with the corresponding simulations of [52] obtained with fixed contact lines.

Fig. 26 compares the shape calculated by the boundary element method of [52] and the iso-line C ¼ 0:5 obtained in our
simulations with the 120	 80 grid. We observe a very good agreement. The iso-lines C ¼ 0:05 and C ¼ 0:95 are also repre-
sented to quantify the diffusion of the interface. The thickness of the interface is found to be less than 3 cells. A quantitative
comparison is estimated by calculating the difference between the numerical y-coordinate yC¼0:5

k of the interface (C ¼ 0:5)
and the corresponding value ySB calculated by Schleizer and Bonnecaze [52] at the same x-coordinates xk. The standard devi-
ation is normalized by the initial thickness of the drop:
E ¼ 1
e
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Fig. 26. Comparison with the Stokes solution of [52] for Ca ¼ 0:05;Ca ¼ 0:1 and Ca ¼ 0:15. The bold dashed line are their results. The thin lines are the
present results for C ¼ 0:05;C ¼ 0:5 and C ¼ 0:95. The distance on the axis are normalized by H=2.
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where N is the number of nodes describing the interface. The comparison is performed by digitizing the interface obtained by
Schleizer and Bonnecaze [52]. The systematic error made by the software used to digitize the interface has been tested on a
hemi-circular shape and has been estimated to be around 0:3%. We have tested different values for Nj and NL used for the
filtering of the capillarity term. We have observed that all the combinations of filtering numbers ðNj;NLÞ tested give com-
parable results. We have also considered the effect of the grid resolution on the results. Three different resolutions have been
considered: e=Dy ¼ 10; e=Dy ¼ 20 and e=Dy ¼ 30. The tests were performed for the three capillarity numbers with Nj ¼ 12
and NL ¼ 6. The results indicate a satisfactory precision even for a very rough description of the drop e ¼ 10Dy. The accuracy
is found to be similar for e=Dy ¼ 20 and e=Dy ¼ 30 showing that a grid corresponding to at least 20 cells per radius is rec-
ommended for such simulations. For Ca ¼ 0:005 and Ca ¼ 0:1, a very good agreement is found (E 
 0:5% and E 
 1%, respec-
tively) and no significant effect of Nj and NL is observed concerning the shape of the drop. For Ca ¼ 0:15 the difference is
more important (around 6%). The main difference is the position of the upstream contact line where the value of the contact
angle is very small.
8.2. Drop in a Poiseuille channel flow

Here we consider a two-dimensional drop in a channel (UW ¼ 0, Fig. 25). We note H the height of the channel, e the initial
height of the drop and Q the gas flow rate. We define the capillary number as Ca ¼ lLUG=r and the drop Reynolds number as
Re ¼ qGUGe=lG where UG ¼ Q=H is the mean velocity of the gas in the channel. For the simulations reported below, the



Table 9
Critical value of the incident Reynolds number ReC when the drop starts to move.

Rec ðhR; hAÞ ¼ ð80�;100�Þ ðhR; hAÞ ¼ ð60�;120�Þ ðhR; hAÞ ¼ ð40�;140�Þ

e=H ¼ 0:2 795 1165 1760
e=H ¼ 0:5 55 91 106
e=H ¼ 0:8 14 24 35

Fig. 27. Drop deformation at ReC for the hysteresis ð80�;100�Þ (left), ð60�;120�Þ (centre) and ð40� ;140�Þ (right), for the drop height h=H ¼ 0:2;0:4 and 0:8.

Fig. 28. Evolution of f ðe=HÞ ¼WeC=ðcos hR � cos hAÞ. — f ðe=HÞ given by relation (40), – – – f1ðe=HÞ ¼ ð1� e=HÞ2; . . . f0ðe=HÞ ¼ 1=12ðe=HÞ2. Grid 420	 80:
� ðhR; hAÞ ¼ ð40�;140�Þ;M ð60�;120�Þ;� ðhR; hAÞ ¼ ð80� ;100�Þ; Grid 620	 120: H ðhR; hAÞ ¼ ð40�;140�Þ;} ðhR; hAÞ ¼ ð80�;100�Þ.
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physical parameters are qL ¼ 1000 kg=m3
;lL ¼ 10�2 Pa s; qG ¼ 1 kg=m3

;lG ¼ 2:10�5 Pa s. The viscosity and density ratios
are thus lL=lG ¼ 500 and qL=qG ¼ 1000, respectively. The computational domain 10 H 	 H is described using 420	 80 or
620	 120 cells. The time step is Dt ¼ 10�6 s. The drop is located at 2:5 H from the entrance of the domain. The grid is uni-
form in the region 0 6 x=H 6 5 centered on the drop and the grid spacing is progressively increased using a geometrical pro-
gression for 5 6 x=H 6 10. Some simulations have been performed to test the position of the drop relative to the outlet
boundary and relative to the entrance of the domain where a parabolic profile is imposed. The mean velocity in the channel
UG is slowly increased from 0 to 20 m=s until that the drop starts to move. The characteristic time of the flow acceleration is
chosen to be much larger than the characteristic time of the drop deformation by viscosity tv 
 lLh=r and inertia
ti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qLR3=r

q
, respectively. Typically, the time to reach the maximum flow rate is 
 100 ms with a time step Dt ¼ 1 ls while

tv 
 0:1 ms and ti 
 1 ms.
Table 9 reports the critical Reynolds number ReC corresponding to the beginning of the sliding motion of the drop for

three hysteresis conditions ðhA; hRÞ ¼ ð100�;80�Þ; ð120�;60�Þ and ð140�;40�Þ and three drop heights e=H ¼ 0:2;0:5 and 0:8.
As expected the critical value ReC decreases when the size of the drop increases, a larger drop being easier to deformed until
the advancing and receding contact angles reach their critical values hA and hR, respectively. For the same reason, ReC is ob-
served to increase with the magnitude of the hysteresis (difference between hA and hR) since the capillarity force that main-
tains the drop on the wall increases with the magnitude of the hysteresis. Fig. 27 reports the shape of the drop at ReC . This
figure reveals that the shape is dependent on both the drop size and the hysteresis condition, the deformation increasing
with increasing the hysteresis.

A force balance on the static drop can be used to determine a criteria for the apparition of the sliding motion. Considering
the values of the Reynolds numbers reported in Table 9 and the value of the capillary number (Ca ¼ lGUG=r < 10�3), inertia
and surface tension are the dominant effects. Consequently, a simple force balance consists in equating the inertia of the inci-
dent gas 
 qGU2

Ge acting on the drop with the capillarity resistance rðcos hR � cos hAÞ. Such force balance introduces a critical
Weber number We ¼ qGU2

Ge=r controlled by the hysteresis [56]:
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WeC / ðcos hR � cos hAÞ
The evolution of the ratio WeC=ðcos hR � cos hAÞ reported in Fig. 28 is found to be nearly constant for a given e=H for the two
grids used and the three hysteresis conditions. Consequently, WeC evolves linearly with ðcos hR � cos hAÞ and Fig. 28 shows
that the ratio WeC=ðcos hR � cos hAÞ decreases with the value of e=H. The critical Weber number is dependent on e=H in agree-
ment with the dimensional analysis:
WeC ¼ f
e
H

� �
cos hR � cos hAð Þ ð39Þ
The numerical values of f ðe=HÞ are reported in Fig. 28. We observe that the behavior at small and large e=H is different. This
difference can be intuitively understood since for small values of e=H the perturbation generated in the flow by the drop is
small while for larger values of e=H close to unity, the flow is significantly accelerated between the drop and the upper wall
due to mass conservation of the gas (Venturi effect). In this situation (e=H! 1), gas inertia acting on the drop can be esti-
mated by considering the mean velocity UGH=ðH � eÞ between the top of the drop and the upper wall giving
f1ðe=HÞ ¼ ð1� e=HÞ2. For small drops (e=H! 0), the effect of the fluid inertia can be estimated by the integration from
y ¼ 0 to y ¼ e of the parabolic incident velocity given f0ðe=HÞ ¼ 1=12ðe=HÞ2.

Fig. 28 clearly shows that these two functions are effectively the two asymptotic limits for the evolution of f ðe=HÞ. A sim-
ple fitting function f ðe=HÞ can be deduced from these two evolutions:
f
e
H

� �
¼ 1þ f0

e
H

� �h i
f1

e
H

� �
ð40Þ
as shown by Fig. 28.

9. Conclusion

In this paper, a numerical”macroscopic-scale” method to describe static (including hysteresis) and moving contact lines
for partially wetting liquids has been presented and tested in several well controlled situations. The numerical method is
based on the implementation of the apparent angle observed at intermediate length scales. A‘‘sub-grid” description of the
contact line consists in imposing the apparent angle for the hysteresis as well as for the dynamic description of a moving
line. For this purpose a dynamic model valid for viscous contact line regimes has been implemented. Note that any other
dynamic model for moving contact line [12,20,26] can be readily introduced in our code. The code is now able to be use
for a comparison of these different dynamics model with experiments of liquid spreading on solid surfaces. The choice of
the grid size at the wall is imposed by the physical length scale introduced to cut of the singularity of the contact line cor-
responding to the intermediate scale Dx 
 r 
 10 lm. The developed procedure is similar to a ghost description at the wall
and it can be implemented in any numerical methods with no interface reconstruction algorithm (VoF, Level Set). The
numerical model has been tested by comparison with analytical solutions, numerical simulations or experiments for differ-
ent situations: the equilibrium shape of a drop released on a hydrophobic or hydrophilic wall, the axisymmetric spreading of
a drop for a partially wetting liquid, the migration of a drop placed on a wall that is slowly inclined and finally a drop sub-
mitted to a Couette or Poiseuille flow. The agreement has been found very satisfactory and shows that our code is able to
simulate problems controlled by the contact line with a relative moderate grid resolution.

In the discussion of the results, it has been pointed out that simulations of moving contact line cannot be performed using
a static constant angle with a no-slip condition at the wall. The choice of the dynamic model used to describe a moving con-
tact line is also important and simulations have to be performed respecting the range of validity imposed by the selected
physical modeling.
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